Cite this dataset
Mashitah Mohd Hussain (2020) Incoming Load data in Malaysia. [Dataset]
Description
Title of related paper: SHORT TERM FORECASTING THE ELECTRICAL CONSUMPTION BY USING NEURAL NETWORK: JOINT APPROXIMATE DIAGONAL EIGENVALUE
The data is taken from incoming data from utility provider in Malaysia
Suggested citation: Please reference the associated publication above when using this datasets/or any papers below:
[1] M. Mohd Hussain, Z. H. Zakaria, and S. Serwan, “Voltage estimation using ICA on distribution system,” 2013, doi: 10.1109/PEOCO.2013.6564555.
[2] M. M. Hussain, Z. H. Zakaria, and S. Serwan, “FastICA techniques for load profiles estimation,” in ISIEA 2012 - 2012 IEEE Symposium on Industrial Electronics and Applications, 2012, pp. 161–166, doi: 10.1109/ISIEA.2012.6496620.
[3] M. M. Hussain et al., “Prediction of time series based on load profile using JADE technique,” 2017 IEEE 8th Control Syst. Grad. Res. Colloquium, ICSGRC 2017 - Proc., no. August, pp. 33–36, 2017, doi: 10.1109/ICSGRC.2017.8070563.
[4] M. M. Hussain, “POWER LOSS ESTIMATION DUE TO DIFFERENCE TRANSFORMER TAP OWER LOSS ESTIMATION DUE TO DIFFERENCE TRANSFORMER TAP CHANGER POSITION AT INTERFACE,” J. Fundam. Appl. Sci., vol. 4, no. 1, pp. 685–696, 2017.
[5] M. M. Hussain, S. Serwan, and Z. H. Zakaria, “Nodal Load Profiles Estimation for Time Series Load Flow Using Independent Component Analysis,” 2012, pp. 1050–1055.
Metadata
Item Type: | Dataset |
---|---|
Creators: | Mashitah Mohd Hussain |
ORCID: | https://orcid.org/0000-0001-8974-3668 |
Keywords: | Electrical Engineering, Electricity, Consumer Analysis |
Subjects: | Science and Technology > Engineering |
Research Fields: | Physics, Engineering and Material Science |
Divisions: | Engineering Studies |
Date: | 24 August 2020 |
Date Deposited: | 01 Aug 2023 07:10 |
Identification Number (DOI): | 10.17632/n99dryms76.3 |
URI: | http://data.uitm.edu.my/id/eprint/4 |
ID Number : | 4 |
Indexing : |
Files
Incoming Profile data in Malaysia.txt - Published Version
Available under License Creative Commons Attribution.
Download (4kB)